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Abstract 
An application of GIs for landslide hazard assessment using 
multivariate statistical analysis, mapping, and the evaluation 
of the hazard maps is presented. The study area is the 
Kulekhani watershed (124 km2) located in the central region 
of Nepal. A distribution map of landslides was produced from 
aerial photo interpretation and field checking. To determine 
the factors and classes influencing landsliding, layers of 
topographic factors derived from a digital elevation model, 
geology, and land use/land cover were analyzed by quanti- 
fication scaling type Il (discriminant) analysis, and the results 
were used for hazard mapping. The effects of different samples 
of landslide and non-landslide groups on the critical factors 
and classes and subsequently on hazard maps were evaluated. 
Simple random sampling was used to obtain samples of the 
landslide group, and either an unaligned stratified random 
sampling or an aligned systematic sampling method generated 
the non-landslide group. For the analysis, one set of the 
landslide group was combined with each of five different sets 
of the non-landslide groups. Combinations of different samples 
yielded some minor differences in the critical factors and 
classes. The geology was found to be the most important factor 
for landslide hazard. The scores of the classes of the factors 
quantified by the five analyses were used for the hazard 
mapping in the GIS, with four levels of relative hazard classes: 
high, moderate, less, and least. The evaluation of five hazard 
maps indicated higher accuracy for the combinations in which 
the non-landslide group was generated by the unaligned 
stratified random sampling method. The agreements in the 
hazard maps, produced from different sample combinations 
using unaligned stratified random sampling for selecting non- 
landslide group, were within the acceptable range for the 
practical use of a hazard map. 

Introduction 
Background 
Landslides are among the most common natural hazards and 
are the most damaging, leading to a variety of human and envi- 
ronmental impacts. The quantitative assessment of landslide 

hazards for a large area is critical to the mitigation of these loses. 
Such an assessment is also essential for activities associated 
with watershed management. This study describes a method 
for large area landslide hazard assessment, mapping, and eval- 
uation methods and provides an example of a study area from 
Nepal. 

Nepal is a country comprised of 83 percent hills and moun- 
tains, and steep terrain, fragile geology, and seasonal monsoon 
rainfall contribute to the landslide potential. Every year, sedi- 
ment-related disasters in Nepal result in an average loss of 400 
lives and property losses amounting to US $17 million (Disas- 
ter Prevention Technical Center [DPTC], 1994). 

Geographic information systems (GIS) (Burrough, 1986; 
Aronoff, 1989; Marble, 1990) have overcome many of the diffi- 
culties normally associated with the handling of data in the 
study of geomorphic hazards (Dikau et al., 1996). For example, 
Walsh et al. (1990) and Walsh and Butler (1997) used aG~s  tech- 
nique to illustrate morphometric characteristics of snow-ava- 
lanche paths and debris flow. Wadge et al. (1993) used a GIs to 
evaluate risk associated with geomorphic hazards and popula- 
tion vulnerability. Various techniques using GIS for the assess- 
ment of landslide hazards have been employed by researchers 
(e.g., Gupta and Joshi, 1990; Mejia-Navarro et al., 1994; Van 
Westen, 1994; Brunori et al., 1995; Terlien et al., 1995; Binaghi 
et al., 1998; Dhakal et al., 1999). Nevertheless, the studies that 
have used GIS in landslide hazard assessment remain limited, 
especially for large areas that can take full advantage of GIS. 

Oeneral Methods and Techniques for Landslide Hazard Assessment 
Among many useful classifications of assessment techniques 
for landslide hazard, the classifications given by Mantovani et 
al. (1996) and Hartle'n and Viberg (1988) cover the majority. 
The methods of Mantovani et al. are for analytical methods 
(distribution analysis, qualitative analysis, deterministic anal- 
ysis, landslide frequency analysis, and statistical analysis). 
The approach of Hartle'n and Viberg describes hazard types 
(absolute hazard, monitored hazard, empirical hazard, and rel- 
ative hazard). Distribution analysis results in a map, which 
gives information pertaining only to those sites where land- 
slides have occurred in the past. In qualitative analysis, which 
is also called geomorphological analysis (Kienholz et al., 1984; 
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McKean et al., 1991), several characteristics of terrain are used 
to define landforms. The degree of hazard is then evaluated at 
each site of the terrain based on subjective decision rules. The 
deterministic approach (e.g., Skempton and Delory, 1957; Oki- 
mura, 1982; Mostyn and Fell, 1997) expresses the stability of 
slopes in terms of the safety factor (absolute hazard). For large 
areas, the variations in parameters included in the analysis of 
the safety factor are too large to accurately quantify (Jibson and 
Keefer, 1989; Mulder, 1991). In landslide frequency analysis 
(e.g., Capecchi and Focardi, 1988), earthquake and rainfall 
records are compared with landslide dates to obtain a threshold 
value for certain frequency levels (monitored hazard). The 
empirical hazard is assessed from earlier and active landslide 
data by examining relationships such as those between slope 
angle and relief (e.g., Zika et al., 1988). The empirical and moni- 
tored hazards require continuous, long-term data on the land- 
slides and their causative factors under similar environmental 
conditions. These data are often unavailable. In statistical 
analysis, the factors associated with topography, geology, and 
vegetation which can be considered as indices of the parame- 
ters of safety factor are quantified to assess their contributions 
to landsliding (relative hazard (Yin and Yan, 1988; Wang and 
Unwin, 1992; Pachauri and Pant, 1992; Sarkar et al., 1995; Mark 
and Ellen, 1995)). This approach is based on the assumption 
that future landslides will be more likely to occur under condi- 
tions similar to those of previous landslides (Varnes, 1984; 
Brabb, 1984). 

Approach Employed, Issues, and Objectives 
Statistical methods of hazard assessment are particularly 
appropriate for large areas. The benefit of a statistical model is 
that landslide assessment can be made rapidly, and site investi- 
gation cost is minimized. Moreover, the use of GIs has made this 
an effective method. A multivariate statistical approach, such 
as discriminant analysis (Davis, 1986), is considered better 
than the univariate statistical approach, because the former 
takes into account the interrelationships between the factors. 
The need to handle nominal data in discriminant analysis can 
be overcome by employing Quantification Scaling Type I1 (Q-s 
11) analysis (Hayashi, 1952; Hayashi, 1980; Hayashi, 1987), 
which can incorporate nominal data into the model. Two 
groups of sample data, the landslide and the non-landslide, are 
required for discriminant analysis. The critical assumption 
would be that the sampled data truly represent the population. 
It is usually stipulated that the two groups be similar in size 
(Klecka, 1980). Therefore, sampling for a non-landslide group 
is required due to the very large quantity of non-landslide data 
as compared to the quantity of landslide data, even if all land- 
slide data are to be utilized. Hence, in hazard assessment based 
on a small grid-cell, the outcome of the analysis may depend on 
the sample of landslide and non-landslide data used in the 
analysis (Aniya, 1985; Van Westen, 1993; Chung et al., 1995; 
Dhakal et al., 1999). 

Selecting a representative landslide group that occupies a 
very small area is not a difficult task whereas selecting a non- 
landslide group that occupies a large area is difficult because a 
100-kmZ area consisting of 25- by 25-m grid cells results in a 
total of 160,000 grid cells. The use of large grid-cell size (e.g., 
Cararra, 1983) or a land unit based on the catchment area or 
slope sections (e.g., Carrara et al., 1991) may result in a hazard 
map that is overly generalized. The aggregation of data in a unit 
causes a generalization of the input variables, and the relation- 
ship between the landslide and non-landslide group cannot be 
evaluated at the location of the phenomena themselves (Van 
Westen, 1993; Chung eta]., 1995). Although sampling schemes 
have been shown to be crucial in the small grid-cell based sta- 
tistical hazard models, no study exists which has attempted to 
clarify the problem. 

A simple random sampling may be suitable for landslide 
cells. This approach, however, is not practical for obtaining 
non-landslide cells, because some parts of the area may be over 
sampled or under sampled. To overcome this problem for a 
non-landslide group, either a stratified random or systematic 
sampling may be effective. GIS is then applied to an examination 
of the effect of different landslide and non-landslide groups on 
the outcome of the critical factors and classes, from which haz- 
ard maps are produced. With a GIS we can evaluate the classi- 
fied grid cells at the same location on different hazard maps, a 
process resulting in what we refer to hereafter as "spatial 
agreement." 

The objectives of this study are (1) to examine the effect of 
different sample combinations (landslide and non-landslide) 
in defining the factors and classes contributing to landsliding, 
(2) to produce landslide hazard maps, and (3) to evaluate the 
hazard maps produced. To investigate the first objective, GIs 
and 9-s 11 analysis were used. The results of Q-s 11 analysis were 
then used to produce hazard maps, and spatial agreements in 
the hazard maps were evaluated using GIS. 

Study Area 
The study area is the Kulekhani watershed (124 km2) located in 
the Lesser Himalayan region of the Himalayan belt in the central 
region of Nepal. The area lies between 27" 34' N and 27" 42' N 
latitudes and between 85" 01' E and 85" 12' E longitudes (Fig- 
ure I) ,  with elevations ranging from 1,500 m to 2,600 m. This 
region of the Himalayan belt in Nepal is highly populated and 
most prone to landsliding. The average annual rainfall is about 
1600 mm. The area is drained by the Palung River, which emp- 
ties into the Kulekhani reservoir. The reservoir received a tre- 
mendous amount of sediments (thirty times the average 
annual) during the landslideldebris-flow disaster of July 1993 
(Dhakal, 1995). This is the only reservoir in Nepal and sup- 

Figure 1. The study area, Kulekhani watershed, Nepal. 
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ports one third of the total electric power generation of Nepal; 
consequently, landslide hazard assessment is critical for effec- 
tive watershed management. The rocks of the study area fall in 
the Phulchawki group or the Bhimphedi group of the Kath- 
mandu complex of the Lesser Himalaya with granite intrusions 
(Stocklin and Bhattarai, 1981). The Phulchawki group is char- 
acterized by sedimentary or weakly metamorphosed rocks and 
consists of slates, limestones, and quartzites. The Bhimphedi 
group contains high-grade meta-sedimentary rocks and con- 
sists of slates, meta-sandstones, phyllites, schists, quartzites, 
and marbles. Crop and forestlands occupy 43 and 44 percent of 
the total land area, respectively. 

Data Acquisition and GIS Data Layers 
Stereopairs of black-and-white vertical aerial photographs 
(1:20,000 scale) taken in March 1994 were interpreted for land- 
slide identification. Using a stereo zoom-transferscope, land- 
slides identified on the aerial photographs were plotted on a 
topographic map at a scale of 1:12,500 (photographically 
enlarged from 1:25,000). The landslide distribution map was 
finalized and digitized after field verification. 

A digital elevation model (DEM) was generated from a trian- 
gulated irregular network (TIN) model using digitized contours 
of topographic maps (contour interval 20 m). The slope gradi- 
ent was divided bv a 10-degree interval into five classes [Table 
1). Elevation and slope asGcts were divided into four classes 
each. Ridges and valleys were also defined from the DEM. 
Employing the Strahler (1957) method for numbering the 
stream orders, the drainage basin order layer was derived from 
the topographic map, and divided into three classes. After 
minor modifications based on fieldwork and aerial photo- 
graphic verifications, a land-uselland-cover layer was created 
with five classes from a land-uselland-cover map (1:25,000 
scale) produced in 1991 (Department of Forest, Nepal, 1991). 
The geological map at a scale of 1:50,000 (Nepal Electricity 
Authority, 1994) was digitized to produce the geology layer. 
The scale of the geological map is relatively smaller than the 
other maps used. However, the spatial variation in geology 
(rock types) relating to landslides is not as fine as other factors 
such as slope gradient or land uselland cover. The selection and 
classifications of these factors were primarily guided by the 
sample landslides surveyed in the field, and previous knowl- 
edge of the causal relationships between slope failure and 
instability factors (e.g., Coates, 1977; Varnes, 1978; Aniya 1985; 
Crozier, 1986; Zinrnermann et al., 1986; Dhaka1 et al., 1997). 
Figure 2 depicts the flow of this study. 

Edsting Data 
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Figure 2. Flow diagram of the study. 

Method of Analysis 

Q-S I1 Analysls 
The 4-s n is a multidimensional quantification analysis (Hay- 
ashi, 1950; Hayashi, 1954a) which incorporates nominal data, 
and is the same as discriminant analysis. The quantification is 
attained by using frequencies as input data to maximize the 
efficiency of discrimination (Hayashi, 1952; Hayashi, 1954a). 
The method is suitable to the landslide hazard assessment, 
because nominal variables (factors) such as geology or land use/ 
land cover are often most important to discriminate between 
landslide and non-landslide groups. Other discriminant func- 
tions (such as canonical) require interval or ratio data (Klecka, 
1983). The linear Q-s n function (score; aa,) for a sample belong- 
ing to a group q with n factors and m classes in a factor can be 
written as 

n m 

mq = Ci(j17 Xji 
j=1 i=1 

TABLE 1. FACTORS AND THEIR CLASSES IN GIs FOR A Q-S II ANALYSIS 

Class Code 

Factors 1 2 3 4 5 6 7 

Slope gradient 
Slope aspect 
Elevation 
Drainage basin 

order 
Distance from 

ridge 
Distance from 

valley 
Geology 

Land uselland 
cover 

<15" 
North (315"-45") 
<I800 m 
First 

Slates with quartz- 
ites or lime- 
stones 

Crops 

15"-25' 25"-35" 35"-45O >45O - - 
East (45"-135") South (135°-2250) West (225°-3150) - - - 
1800 m-2000 m 2000 m-2200 m >2200 m - - - 
Second Third - - - - 

Limestones Slates with metasand- Schists with quartz- Biotite schists and Granite Alluvium 
stones and phyl- ites and marbles micaceous 
lites quartzites 

Coniferous Broad leaf forest Mixed forest Shrub land 
forest 
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Number of Number of Total Sampling method 
Cnmbi- non-landslide landslide number of for non-landslide 

Sampling 
method for 

nation grid cells grid cells grid cells group landslide group 

1 572 566 1138 unaligned stratified random Simple random 
566 1137 2 571 
566 1709 3 1143 
566 1851 Aligned systematic 4 1285 
566 1209 5 643 

where &(ji) = 1 if sample a belongs to the i-th class of factor j, 
otherwise 0; and Xji = score of the i-th class of factor j. 

The quantification of classes of the factors (Xji) is done in 
such a way that the proportion of variance between the groups 
to the total variance (i.e., the correlation ratio, $1, which takes 
the value between zero and one, is maximized. Eta (7) mea- 
sures the degree of difference between the group means. The 
efficiency of the discrimination is therefore given by q or $ 
(Hayashi, 1952; Hayashi, 1954a). Because a large class score in 
a factor contributes more than a small one in the Q-s n func- 
tions, a class score and the range of scores of a factor (difference 
between the maximum and minimum scores of the classes) can 
be interpreted to determine their importance. For the data, 
which are not sampled, the factor classes are measured, and 
the group to which they belong is predicted from the score of 
the classes. The Q-s 11 analysis is available in the Japanese ver- 
sion of the SPSS statistical package. 

Sampling of Landslide and NokLandslide Groups 
Considering the minimum size of the landslides, the study area 
was tiled into grid cells of 25 m by 25 m, and one set of grid 
cells (566) representing the landslides was randomly chosen. 
These grid cells represent about 45 percent of the total number 
of 1,246 landslides. The remaining 680 landslides (referred to 
as "test landslide") were later used for the evaluation of the 
hazard maps produced. Subsequently, the area was stratified 
into a rectangular block of 2.4 km by 1.5 km, and three sets of 
non-landslide groups were derived with the same number of 
grid cells from each block using the unaligned stratified ran- 
dom sampling method. In addition, using the aligned system- 
atic sampling method, two sets of non-landslide groups, with a 
prior estimation of a sample size, were derived from the same 
starting value but with a different sampling interval. Alto- 
gether, five sets of samples were obtained for the non-landslide 
group (Table 2). For each grid cell of a set of landslides and five 
sets of non-landslides, class codes of eight terrain factors (see 
Table 1) were assigned for the Q-s n analysis. 

Assoclatlon between the Factors 
A high correlation of factors may simply reflect redundancy 
without contributing much improvement in the analysis. To 
address this issue, correlation coefficients between these fac- 
tors were calculated. Table 3 shows that the results for combi- 
nation 1 lack strong correlations. The degree of correlation 

between factors may be different depending on different sam- 
ples (Liebetrau, 1983). In reality, we cannot expect the caus- 
ative factors of landslides to be entirely independent. The 
correlations of factors in five different sample combinations 
(see Table 2) were examined, and some factors were excluded 
in order to see their effect on the results of the Q-s n analysis. 
Based upon field information, the results using all eight factors 
in the analysis appeared more reasonable in all combinations. 
Moreover, the maximum separation, as indicated by q or $, 
and the Q-s 11 accuracy (discussed later) were notably higher 
when all the eight factors were used. 

Results 
The values of q, $, and the separation between the group 
centroid (Table 4, bottom) are generally higher for combina- 
tions in which the non-landslide group was obtained using the 
unaligned stratified random sampling method. For the sample 
size employed in the analysis, the values of q are reasonable 
(Hayashi, 195413) in all combinations for the discrimination 
between the landslide and non-landslide groups. The class 
scores and the range of scores are shown in Table 4. Based upon 
the range of scores, geology is found to be the most important 
factor contributing to landsliding in all combinations. The 
ranking order of the other factors shows some minor variations. 
Elevation, land uselland cover, and slope aspect fall within the 
second group of importance, while slope gradient is in the third 
group. This is true in all combinations except for combination 
2, which shows the importance of drainage basin order. Dis- 
tance from ridge and distance from valley have the least 
importance. 

For the classes of geological factor, the score is high for 
"granite," followed by "biotite schists with micaceous quartz- 
ites." Granite in the study area has been characterized as highly 
weathered and permeable. With respect to elevation, a zone of 
"2,000 m-2,200 m" is most susceptible, followed by "1800 m- 
2000 m." In land uselland cover, "coniferous forest" shows the 
highest importance followed by "shrub land" in combinations 
1 and 3, whereas "shrub land" is followed by "coniferous for- 
est" in combinations 2,4, and 5. Most of the areas covered by 
coniferous species are characterized as immature and poorly 
stocked. As for slope aspect, "East" followed by "South" facing 
slopes in combinations 1 and 3, and "South" followed by 
"East" in combinations 2,4, and 5 are shown to be the most 
important. This pattern reflects the monsoon rainfall distribu- 

Slope Slope Drainage Distance Distance Land use1 
gradient aspect Elevation basinorder fromridge fromvalley Geology landcover 

Slope gradient 1.000 
Slope aspect -0.003 1.000 
Elevation 0.153 0.014 1.000 
Drainage basin order 0.165 0.068 0.224 
Distance from ridge -0.005 -0.001 -0.053 
Distance from valley -0.020 0.011 0.020 
Geology 0.032 -0.094 0.108 
Land uselland cover 0.085 -0.036 0.128 
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TABLE 4. THE RESULTS OF THE Q-S 11 ANALYSIS. A LARGE RANGE OF SCORES ~NDIcATEs THE MORE DISCRIMINATING POTENTIAL OF THE FACTOR A N 0  A NEGATIVE 
CLASS SCORE IMPLIES THE CONTRIBUTION TO LANDSLIDING 

Combination Combination Combination Combination Combination 

Slope aspect 

Elevation 

- - -  

1 2 3 4 5 
Class- 

Factors Class code CS RS CS RS CS RS CS RS CS RS 

Slope gradient <15" 1 0.138 0.573 0.074 0.268 0.109 0.438 -0.059 0.399 -0.040 0.476 
15'-25" 2 -0.098 -0.040 -0.088 -0.025 -0.028 
25'-35" 3 0.025 0.060 0.038 0.141 -0.009 
35"-45O 4 -0.350 -0.194 -0.288 -0.160 -0.079 
>45O 5 0.223 -0.024 0.150 0.240 0.397 
North 1 0.396 0.775 0.473 0.831 0.484 0.834 0.343 0.832 0.173 0.862 
East 2 -0.379 -0.214 -0.350 -0.289 -0.251 
South 3 -0.215 -0.358 -0.286 -0.412 -0.333 
West 4 0.247 0.128 0.149 0.420 0.529 
<I800 m 1 0.283 0.707 0.335 0.835 0.318 0.856 0.506 1.055 0.317 0.705 
1800 m-2000 m 2 -0.103 -0.177 -0.134 -0.063 -0.006 
2000 m-2200 m 3 -0.365 -0.412 . -0.485 -0.548 -0.389 
,2200 m 4 0.342 0.423 0.371 0.045 0.173 

Drainage basin order First 1 -0.023 0.143 -0.078 0.502 -0.054 0.332 0.028 0.204 0.010 0.267 
Second 2 -0.003 -0.043 -0.033 -0.137 -0.126 
Third 3 0.120 0.424 0.278 0.067 0.141 

Distance from ridge <50 m 1 0.067 0.135 0.002 0.081 0.043 0.106 0.090 0.247 -0.007 0.249 
50 m-100 m 2 0.028 0.048 0.045 0.103 0.147 
>I00 m 3 -0.068 -0.033 -0.061 -0.144 -0.102 

Distance from Valley 1 5 0  m 1 -0.090 0.156 -0.097 0.145 -0.096 0.137 -0.069 0.173 -0.135 0.199 
50 m-100 m 2 -0.010 0.033 0.036 0.104 0.064 
>I00 m 3 0.066 0.048 0.041 -0.029 0.051 

Geology Slates with quartzites or limestones 1 1.883 2.472 1.849 2.557 1.607 2.333 1.657 2.364 1.848 2.415 
Limestones 2 0.630 0.894 0.818 0.771 0.717 
Slates with meta-sandstones and phyllites 3 0.075 0.169 0.112 0.109 0.121 
Schists with quartzites and marble 4 0.195 0.069 0.110 0.162 0.101 
Biotite schists and micaceous quartzites 5 -0.266 -0.099 -0.210 -0.311 -0.321 
Granite 6 -0.589 -0.708 -0.726 -0.707 -0.567 
Alluvium 7 1.359 1.370 0.888 1.097 1.454 

Land uselland cover Crops 1 0.368 0.804 0.326 0.769 0.348 0.789 0.308 0.824 0.421 0.881 
Coniferous forest 2 -0.436 -0.327 -0.441 -0.315 -0.393 
Broad leaf forest 3 0.137 0.219 0.179 0.140 0.0094 
Mixed Forest 4 -0.175 -0.136 -0.193 -0.037 -0.111 
Shrub land 5 -0.262 -0.443 -0.395 -0.515 -0.461 

; 0.450 0.460 0.412 0.379 0.423 
0.203 0.211 0.170 0.143 0.179 

Group centroid: 
Landside group -0.452 -0.462 -0.585 -0.571 -0.356 
Non-landslide group 0.448 0.457 0.289 0.251 0.314 

CS = Class score, RS = Range of scores 

tion, which contributes 80 percent of the total annual rainfall, 
giving southern and eastern faces more rainfall. For slope gra- 
dient, the score is highest at class "35O-45O." The first-order 
drainage basin is found most susceptible in combinations 1,2, 
and 3 while combinations 4 and 5 show higher importance of 
the second order drainage basin. The greater the distance from 
the ridge (>loo m) and the shorter the distance from the valley 
(<50 m), the greater the susceptibility to landslides. 

In summary, the most critical association of classes for 
landsliding are "granite," "2000 m-2200 m," "coniferous for- 
est" ("shrub land" in combinations 2,4, and 5), "East" ("South" 
in combinations 2,4, and 5), "35°-450," "first order" ("second 
order" in combinations 4 and 5), <50 m (distance from valley), 
and >lo0 m (distance from ridge). 

A similar study conducted for the Amahata River Basin in 
Japan by Aniya (1985) found that vegetation, slope gradient, 
and slope aspect were the factors critical to landsliding. A study 
in Omichi-Dani, Japan by Amada et al. (1995) found geology 
and slope aspect as the important factors causing landslides. 
Dikau (1990) found slope angle and concave form elements 
(plan and profile) as the significant descriptors of the land- 
slides in the Mainz Basin, southwest Germany. It is to be expec- 
ted that different regions have different critical factors, because 

the environmental factors such as geology, land use, and topog- 
raphy also are likely to be different as well as the climatic and 
hydrological conditions. 

Classification of Hazard Classes and Mapping 
The factor layers with scores for their classes were superim- 
posed to obtain a cumulative score at each grid cell. The fol- 
lowing discussion illustrates the classification of grid cells into 
different hazard classes. Figure 3 shows the plots of cumula- 
tive frequencies for the sample data of combination 1, with the 
landslide group starting from the smallest score and the non- 
landslide group from the largest score. If the curves of these two 
groups do not intersect, then separation is perfect. However, in 
this case, the curves do intersect and misclassifications will 
occur. For a boundary score that would separate the two 
groups, it appears logical to choose the score at which the two 
curves intersect, i.e., -0.13 (discrimination score] in this case, 
because it is as important to correctly locate stable slopes as 
unstable ones. Consequently, grid cells whose total score of the 
classes was equal to or less than -0.13 were classified into the 
landslide group (unstable), whereas those with the score 
greater than -0.13 were placed in the non-landslide group (sta- 
ble). Then the overall accuracy (4-s 11 accuracy) for the sample 
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Figure 3. Cumulative frequencies and Q-s II scores 
for landslide and non-landslide groups (Combination 
1; see caption of Figure 4 for explanation of Combi- 
nation 1). 

data of combination 1 is 68.5 percent (100 - 31.5; Figure 3). The 
Q-s n accuracy for combinations 2,3,4, and 5 are 70.1 percent, 
69.2 percent, 67.5 percent, and 67.3 percent, respectively. In 
order to differentiate between the very unstable and margin- 
ally unstable categories, and the very stable and marginally sta- 
ble categories, scores at which the accuracy of decision would 
be about 80 percent were selected. This resulted in the division 
of each category into two classes, resulting in four classes of 
relative hazard: high, moderate, low, and least. Figure 4 depicts 
five hazard maps produced &om the results of the five sample 
combinations (see Table 2). Table 5 compares the percentage 
area of hazard classes in five hazard maps in which hazard 
classes do not show substantial differences. 

Evaluatlon of Hazard Maps 
In order to determine which sample combination best repre- 
sents the population, the accuracy of hazard maps (i.e., evalua- 
tion of Q-s n results) was assessed. In addition, the spatial 
agreements between the hazard maps were measured to com- 
prehensively examine the effect of sampling on the final out- 
come of the analysis. 

Accuracy of Hazard Maps 
A common method for the evaluation of landslide hazard map 
is to compute the percentage of landslide for each hazard class 
(Van Westen, 1993; Dhaka1 et al., 1999). A large number of land- 
slide grid cells in the unstable area should indicate higher 
accuracy of the hazard map. Grid cells that lack landslides but 
are classified as unstable may indicate that they are potentially 
unstable (Neuland 1976; Carrara, 1983). The percentage of "test 
landslide" grid cells (other than sampled landslides for analy- 
sis) in the unstable category is a measure of accuracy of the haz- 
ard maps. Then, for the evaluation of hazard maps, the 

- 
Figure 4. Landslide hazard maps produced from the 
results of different sample combinations employed in the 
Q-S 11 analysis. (A) Combination 1 (566 randomly sampled 
landslide grid cells and 572 unaligned stratified randomly 
sampled non-landslide grid cells). (6) Combination 2 (566 
randomly sampled landslide grid cells and 571 unaligned 
stratified randomly sampled non-landslide grid cells). (C) 
Combination 3 (566 randomly sampled landslide grid cells 
and 1143 unaligned stratified randomly sampled non-land- 
slide grid cells). (D) Combination 4 (566 randomly sampled 
landslide grid cells and 1285 aligned systematically sam- 
pled non-landslide grid cells). (E) Combination 5 (566 ran- 
domly sampled landslide grid cells and 643 aligned 
systematically sampled non-landslide grid cells). 

percentage of "test landslide" grid cells in the unstable category 
can be compared to the Q-s n accuracy of the sampled landslide 
data (see Figure 3). 

Combinations 4 and 5 are those in which non-landslide 
groups were obtained by using an aligned systematic sampling 
method. The accuracies for these two combinations are com- 
paratively lower than for the other combinations (Table 6). In 
the aligned systematic sampling method, the selection of the 
starting grid cells predetermined the position of all subsequent 
grid cells. In this study, 196 non-landslide group grid cells in 
Combination 4 were found partially or fully existing within the 
50-m range of landslides. This number is only three for Combi- 
nation 1. These suggest the periodicity of the landslide distribu- 
tion. In the aligned systematic sampling method, a large 

Percentage area of different hazard 
classes (%) 

Combination High Moderate Less Least 

Combination 1 7.7 30.9 44.1 17.3 
Combination 2 7.8 30.5 44.1 17.6 
Combination 3 7.3 30.6 44.8 17.3 
Combination 4 8.3 29.0 43.7 19.0 
Combination 5 8.0 29.0 44.5 18.5 
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TABLE 6. TEST LANDSLIDE GRID CELLS FALLING ON UNSTABLE CATEGORY. FOR 
COMPARISION Q-S 11 ACCURACY IS ALSO LISTED 

Test landslide Q-S JI 
in unstable accuracy 

Combination category (%) (%I 
Combination 1 67.7 68.5 
Combination 2 65.9 70.1 
Combination 3 67.7 69.2 
Combination 4 65.7 67.5 
Combination 5 62.8 67.3 

TABLE 7. COMPARISON OF SPATIAL AGREEMENT (%) BETWEEN FIVE HAZARD 
MAPS 

Combina- Combina- Combina- Combina- Combina- 
tion 1 tion 2 tion 3 tion 4 tion 5 

Combination 1 100 
Combination 2 82.5 100 
Combination 3 88.8 90.1 100 
Combination 4 79.6 81.1 82.7 100 
Combination 5 79 77.9 79.2 87.7 100 

number of non-landslide grid cells adjacent to or near the land- 
slides might have given those grid cell site characteristics simi- 
lar to landslides, due to the effect of autocorrelation, thereby 
lowering the accuracy. Combination 2 has the highest accuracy 
of landslide identification in the Q-s n analysis (sample data). 
This combination resulted in a comparatively low accuracy of 
hazard map compared to combinations 1 and 3 (see Table 6), 
although not significant. 

Evaluatkn of Spatlal Agreement 
To evaluate the spatial agreement of the hazard classes between 
the hazard maps, two of the five hazard maps were overlaid in 
turn, and all the grid cells classified into the same hazard class 

(agreed grid cells) were counted. The "overall spatial agree- 
ment" was then calculated by taking the proportion of agreed 
grid cells to the total number of grid cells, in a manner similar 
to the evaluation of overall accuracy from the error matrix (e.g., 
Congalton et al., 1983; Congalton, 1991). Table 7 compares the 
overall spatial agreement between the five hazard maps. Figure 
5 is a visual example, which depicts the agreed and disagreed 
hazard classifications when the hazard map of combination 1 
was crossed with the remaining four. The disagreement in the 
hazard maps varies between 10 and 20 percent. The agreement 
between the hazard maps is higher for the hazard maps result- 
ing from sample combinations that used the same method for 
selecting a non-landslide group (see Table 2 and Table 7). It is 
also important to point out that disagreement between the haz- 
ard maps was introduced only fiom the immediate class, i.e., 
no "high" hazard class identified in a hazard map was classi- 
fied as "less" or "least" in the other and vice versa. 

Conclusions 
Landslide hazard assessment involves many different prob- 
lems at various stages of analysis. A GIs can facilitate a trial- 
and-error approach for assessment methods. The sampling 
technique is one of the most important aspects of hazard analy- 
sis. We have shown in this study that the use of a GIS is invalu- 
able for determining the best sampling techniques for the grid 
cell based hazard assessment. The factors considered may also 
be dependent upon the data available because creating new 
data is time consuming and costly, if not impossible. Also, local 
site characteristics are often difficult to incorporate into hazard 
assessment for large areas. 

Our results suggest that the unaligned stratified random 
sampling method is better than the aligned systematic sam- 
pling method for selecting a non-landslide group, because the 
former yielded the highest Qs-n indices, and resulted in the most 
accurate hazard map. A small variation in the overall spatial 
agreements can be recognized in the three hazard maps, which 
used the results £tom the unaligned stratified random samples 

Figure 5. Spatial agreement and disagreement in the hazard classes 
between different hazard maps. The figure depicts the effect of sarn- 
pling schemes on the hazard maps (see captions of Figure 4 for 
explanations of combinations). (A) Combination 2 and Combination 
1. (B) Combination 3 and Combination 1. (C) Combination 4 and 
Combination 1. (D) Combination 5 and Combination 1. 
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of non-landslide group. These results are likely to indicate Congalton, R.G., KG. Odewald, and R.A. Mead, 1983. Assessing  and- 
that, although the outcome depends to some extent on the sam- sat classification accuracy using discrete multivariate statistical 

pled data, the difference may be small enough for the practical techniques, Photogrammetric Engineering 6. Remote sensing, 

use of a hazard map. As a result, when using unaligned strat- 49(12]:1671-1678. 

ified random sampling for a non-landslide group, one sample Crozier, J.M., 1986. Landslides: Causes, Consequences and Environ- 

set would practically suffice for the analysis and hazard ment, Croom Helm Ltd., London, 252 p. 

mapping. Davis, J.C., 1986. Statistics and Data Analysis in Geology, John Wiley & 
Sons. New York, 646 D. 
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